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0. ABSTRACT

A finite group G is commonly presented by a set of elements which

generate G. We argue',that for algorithlic purposes a considerably better

presentation for a fixed group G is given by random cenerator set for G:

a set of random elements which generate G. We bound the expected number of

random elements required to generate a given group G.

Our main results are prcbabiZistic aZao-,'ihs which take as inputs a

-~ 3random generator set of a fixed permutating group G - We give O(n log n)

expected time sequential RAM algorithms for testing membership, group

inclusion and equality. Our bounds hold for any worse case input groups;

we average only over the random generators representing the groups. Our

algorithms are two orders of magnitude faster than the best previous

algorithms for these group theoretic problems, which required (n5) time

even if given random generators.

Furthermore, we show that in the case the input group is a

2-group with a random presentation, than those group theoretic problems can

3 0(1)be solved by a parallel RAM in O(log n) expected time using n

processors.
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0. ABSTRACT

A finite group G is commonly presented by a set of elements which

generate G. We argue that for algorithmic purposes a considerably better

presentation for a fixed group G is given by r-and'rr qnecrator set for G:

a set of random elements which generate G. We bound the expected number of

random elements required to generate a given group G.

Our main results are Frr- Zio tic'a : '-r., which take as inputs a

3random generator set of a fixed permutating group G c . We aive C(n I--.

exoected time sequential RA: algorithms for testing membership, group

inclusion and equality. Our bounds hold for any worse case input crouls;

we average only over the random generators representing the groups. Our

algorithms are two orders of magnitude faster than the best previous

5
algorithms for these group theoretic problems, which required 2?(n ) time

even if given random generators.

Furthermore, we show that in the case the input group is a

2-group with a random presentation, than those group theoretic problems can

3 0(1)be solved by a parallel RAN in O(log n) expected time using n

processors.
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I. INTRODUCTI ON

1.1 Group Inference and Representation by Random Examples

In informal mathematical discourse, we often make use of examples to

illustrate general principles; and in many cases this suffices to convey

the essential ideas. For instance, Euclid never formally statel his algorithm

for computing GCD but instead explained it by a series of example computations.

On the other hand, a student may illustrate comprehension of a general

principle, say Euclid's algorithm, by producing some exam! les.

The fields of Inductive Inference and Combinatorial Enumeration concern

the dual problems of inference of a combinatorial structure from examples,

and qeneration of sarmle examples of a given combinatorial structure,

respectively. In Section 2, we investigate these problems when the combina-

torial structure of interest is a finite group, and the samples are random,

with inde-:endent uniform distribution. We give upper bounds on the number

of random elements of G required to generate a fixed group (generally, the

required number of random samples is a logarithm of the group's order).

As an interesting example, consider the group of all permutations of the

RlUBIC's cube. Our results imply this group can be generated (with high

likelihood) by a very small number of random permutations. Furthermore, the

results allow us to verify (within high likelihood) the correctness of a

"solution method" to RUBIC's cube by applying the "solution method" on a small

number random example permutations of RUBIC's cube.

...........................

......... l

• - - . . . oo° .-.•. . .. . .. ,. . .. . . . . . . . . . . . . . .



-3-

1.2 Group Theoretic Problems

The fundamental groups problems which will ccncern us are:

(1) Grozop Imcrship: given an input element x, and a groul. G,

test xE G.

(2) Jrc+r ] - ,ior: given groups G, H, test G C H.

(3) Gro: r 5z: zty: given groups G, H test G=H.

In these problems, a group is normally assumed to be finitely presented.

We further assume that a group is randomly presented in the sense defined

below.

Let a ... r: oCZcr.tOr sct < .izc k for group G be a set of k

random, independently chosen elements g....k of G, with the condition

that ql, ... ,g k  generate G. We say <gl ... gk >  is a r2,>;Jb r S:: :iJ -

c'G.

A :0o . i i o 7o-, A for a group problem takes as input a

random generator sets cf given groups. The xT, 6time Ccc Tycx-'&4  of

A is the average time of A ovcr random generator sets, given worse case

groups.

Section 2.: describes a probabilistic algorithm for constructing a

strong generator sequence for a randomly presented group. The first use of . "

such probabilistic constructions (in a considerably less general context

was due to IBabai, 79].

We also discuss in Sections 2.r and 2.6 known algorithms for group,

membership testing, group inclusion, group equality, and random element

generation which require strong generator sequences.

• • -- -+i ,i-. .i----- -- --. ....-. "....-".. -.-.......- -.... ,...... ..... ,. .
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1.3 Probabilistic Algorithms for Permutation Groups

The real motivation of our work, and our strongest results, are efficient

probabilistic algorithms for the permutation group problems: membership,

inclusion, and equality.

[Sim, 78] first gave a well known decision algorithm for these permutation

group problems using a construction known as the Sim's Table; others have found

it to be very efficient in practice. However, in the worse case, Sim's

algorithms were exponential time. [Furst, Hopcroft, and Luke, 81] later

modified Sim's algorithm to yield O(n 6 ) worse case time bounds for these

problems. Still further work by [Jerrum, 82] reduced these worse case time

5bcunds to O(n ). These worse case time bounds seem to be much larger than

would be acceptable in practical applications. This situation motivated us

to investigate the expected time complexity of permutation group problems.

Our main results are C(n3 log n) expected sequential time probabilistic

algorithms for permutation group membership, inclusion, and equality. Our

( 3 -
time bounds OGn loa n) are ".. cxc c wit, -rchahility n for scmn

constant I i that can be set arbitrarily large. In comparison, the pre-

viously sighted algorithms for these permutation group problems have ex.gected

time complexity which is the same as their worse case comrlexit' (n

(Note: Our results here are near optimal in the sense that we can show that

2.49further decrease in our sequential time bounds below, say n , would imply

improvement in the sequential time bounds of best known algorithms for solving

a linear system of size n/2x n/2 over GF(2), which is a special case of

permutation 2-group membership testing.)

"'" " ............................-'-.,""'. ........ .".............'.". . . -
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1.4 Parallel Algorithms in Group Theory

We also investigate the use of parallelism for group theoretic problems.

Our goal is efficient parallel algorithms requiring polylog time, polynomial

number of processors. In Section 4 we give efficient parallel algorithms

for th, oroits a.d block systems of permutation grouls. A 2-group is a ner-

mutation aroutv whose elcrients are all of order of a power of 2; they arise

naturally since a 2-crou- is a subqroupr of automorphisms of binary trees and

furthermore the automorpnisrr croup of any trivalent araph with a fixed

vertex is a 2-crouy, see JLuks, 81]. We qive in Section 5 efficient parallel

algorithms for the jroble=s of membership, inclusion and ecuality for 2-crou s;.

Our parallel 2-croup mcmbershi; algoritho makes interestin 7 use of our n rc-

babilistic technicues: it takes as inn,-ut a random Qg<nerator set cf a cix<i.

2-group, and constructs from them a tow.r -cf CQ!C"' suli:rcuIs w~*>.'..-Iti

possible to do efficient parallel menershir tests.

The parallel complexity of the permutation grou i memiershi:i-roblcn

remains ojen; it is neither known to be log-space complete, for deterministic

polynomial time, nor is there a known Folylog doth algorithm for grculp me.or-

ship. Recently [mcKcrzie and Cook, 83] have given a .olylog time parallel

algorithm for Abelian permutation group membership . Their results, and our

probabilistic parallel algorithm for 2-group membership, are the only

positive results in this recard.

.. •-.< ......... ... -.... ................ i
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2. PROBABILISTIC ALGORITHMS FOR FINITE GROUPS

2.1 Preliminary Definitions

Let G be group specified by presenting a finite list of cenerators, as G

<k > .We often assume G has a 1: zour of oib ro:is

: :G 1D ... =G h  where G o =G and G = I contains only the identity element.

The tower has ;,- ;:t h. For each i =l,...,h let I be an equivalence

relation such that V x,y E Gi 1 , x 7 y iff y-1x E G. The blocks of each

i are the collection of Oojco of Gi in Gi I , denoted by the quotent

G Let R, be a co". ct, -et o -  osez rq 'ese1:tatozs for GiI!Gi

i, a set ccntainin7 exactly one element from each coset of G i_/G . Since

= (G/G 1 ) .(G 'G ( /G. ), the sequence of sets R, . , is called
1 1' 2' n-.hl"

for the group G, with respect to this sub

tcwer.

2.2 Elementary Properties of RAND(G)

W;e will let RA':D(-) denote the uniformly distributed random variable

7ivinj random elements of G (with ecual probability). If xlX 2  are random

variables, let x1 Px 2  if they have the same probability distribution function.

LEMMA 2.1 . z2 :>-, z' x E 7, ' RA L:D(G) - RAND (3)

For proof, observe that the function f (y) =x.y is i-1.
x

LEMMA 2.2. f G' .>J& .............. .... .: . ,- , , i ,

S  ,- r• G/G'. ", RAND(7) RAND(R) -L D

Proof. By Lagrange's Theorem, each coset of GiG' has the same size, so

RAND(G) has equal probability of being in any (iven coset of G!G', say A.

-l
By definition RAND(R) also has tii-; I re: crt;,. but , roduztin: an .-,,-.t of A hy an

-Iiemnt of C' keel s us in tice sam< Oct A. ii': =,- 5X0 ( ) RANL(G' ) hac Jd:, sape
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obalhility of being in A as does RAND(G). By definition, RAND(G) has a

iiform distribution within each coset A. Let xA be the unique element of

in such- that A=x- 1K Thnen since JA =G'I, we must have
A

A : XAIRAt;D (G' ).Hence we conclude that RAN.D (]R)- RN1 (' isas

2iforlv distributed within each coset of G/G' 0

.3 Group Inference from Random Examples

Let G be a fixed finite croup. Let L= "Xx ,... be an infinite

ist of lements chosen independently from RAND(G).

HEOREM 2.1. -1z ":,, Trobh <Xl xi . X >)> - ,

lc.: 7 +' (inicoe CI~lo::(iP/) -' ... ,-= 1-(I--:) IlO g *G

roof. ... 3 = 1,2, -" < xex "<X List 3= J .,I I D-i

r ,ncreain:: order. :ith prooa4ility 1, this gives a tower of suborouns

:- m~7 ... D3 Z7 = where G = <x. ,...,x. >. By Lacranzcs
. I s1 s

: ". .-,- and 3 (icc G Henc

-i

s s- and s: Iro; (0 j +2 11/2 for .

.. .< (i io :i) with probabiiity: b - t then with

rchabili t',' (1-:i) '  l-: we have G= <x ... ,x > if
1M

-, -J s:21 s. lc~
S=l s=12

j 3 In , )loc (I,/.

< io;'L 7+ (ln loj G ) lo( lC/- :. 3 < ]o 0, "
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POLYLOG PARALLEL TIME ALGORITHMS FOR 2-GROUPS

A finite group G is a 2-group if every element has order a power of

We will show that any 2-group has a certain tower of h = log nj subgroups

(0) DG(1) (h) =I. Given generators for each subgroup in such a

3 O(1)
r, we can test membership in O(log n) time using n processors.

:nermore, if G is civen b% random presentation, we shot., that we can

struct such a tower in O(loq n) time using n processors.

Parallel Co-mputation of a Structure Forest

A:2. 2-:rcu: u can be :ecomposed into a subgroup of natural direct

of trrate th v rrr oducts. Thus there is a 2,2Jr( $2kY7 F0

ti:'r __- that C is a subgroui: of the natural direct

- - a atomor: uism crcui s of the trees of F . In particular, each

cf ._ is caled a -,"., : _- and its set of leaves is an orbit of

"r>1 -.. 1 t c7T be an tree or subtree of F which is not a leaf.
G

s,- f leaves of ST and let BI , B2  be the sets of leaves

B t i.-- :ia su tbtrees of ST. Then we require that "BitB 2  be a

lock syste in B.

we art ,=iven generators gl' .... g of 2-group GCS By
k~ n-

cutin:: fist the G-orbit algorithm, and then executing in narallel for

a,hE 1,... ,n' the G-block algorithm of Section 4.2, the structure

est F can be- constructed immediately in O(log n) further time by
G

mination of each G-block.

MA 5.1. 7'; , .N 'O F-G Cs n .zK1 'C
C -n

0(1)
r'c' 07,', O(loa n) :Au n OrJ ,cOrs.

-~ . . .--
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THEOREM 4.2. A &? cic:.4 ~7 a~~.c~

2 crn>ar&~ rcp~s, n' crmxmed2 t :7c O(n log n) zz n

COROLLARY 4.1. rr JOC :: c: 'r.i;s ,;'~iL ~J
nj

(n ~ ~~ 1- 3
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Suppose G is presented as <g 1 ,...,g >. For distinct a, bE {l,...,n],

?t us construct the undirected graph with vertex set i ...... n..ana edqe

t E ={{a,b}} U {{gi(a),gi(b)Ill <i<k}.
a,b " 1

MMA 4.2. [Atkinson, 75] The concetcd component of (-[l,... ,n},E
a,b

Y, z Z,-7 a 's tiz: sm'r:zcct G-..f oftx2- a,b}.

Hence finding G-blocks can be efficiently reduced to undirected graph

)nnectivity, which can apply Lemma 4.1 to get

EMMA 4.3. T;-; G-4C2:C coz: t7 Comrtc r&n + worst coae) in time O(log n)

3
" n k rrceeore.

emark. If G is civen by random presentation, G-blocks can be found in

x×ected time 0(log n) using n- log n processors.

.3 Limited Parallelism for General Permutation Group Problems

The group membership algorithm of [Sims, 78] was improved by (Furst,

ocroft, and Luks, 80] to be polynomial time. However, it appears to be

nherently a sequential algorithm; and can not apparently be speeded up to

olylog time by parallelization. We do not get much better if we attempt to

irectly parallelize our probabilistic algorithms for general permutation

roups. (But our low processor bounds may make our parallel algorithms

ore practical.) We first observe:

EMMA 4.4. 3i.2- a Z " alC fo7 0 pC1 ZCtatio/ 0ro41: n S n, a.c caz cxc

membersie-4 teet: x E G? in tim,: 0(n) usinj n

Applying Theorem 4.1 to our algorithr. of Section 3.3 for Si's

able construction, we get:
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4. PARALLEL ALGORITHMS FOR PERMUTATION GROUPS

4.1 The Parallel Machine Model: Known Results

We will assume the concurrent read, concurrent write parallel RAM

described in [Shiloach and Viskin, 82].

LEMMA 4.1 [Shiloach and Viskin, 82] and [Viskin and Tarjan, 84]. Given an

* -rc~t& grarh of n vertices and m edacs, the cornected cormonents,

a a:g fore'st, and a preorder of each tree in the forest can aZl be

camrea ~in time 0 (log n) and n+m processors.

4.2 Parallel Computation of Orbits and Blocks of Permutation Groups

Let G<S be permutation group over {i.... n}. It follows immediatelyn

from Proposition 3.1, Corollary 3.1, and Lemma 4.1 that

THEOREM 4.1. -,Ie can co...te the orbits of G= <gi'..,gk> in time 0(log n)

n ! ': e .o'rst case 0(nk) rrocessors. Ftrthernore, if G is given NL,

ranjz prsentza:ion, we can ci'mxts the olorbivs in time 0(log n) itsina

n loq n rrocessors, with Zikelihood 1- n for any s:ifficiently large

G acts transitwveZ, on its orbits. G is trans-tive if G has only I

one orbit. Suzpose G is transitive. A nonemptV set B {l,...,n} is a

G-so0 k if V-,7' EH, 7(B) =TT'(B) or -(B) n-' (B) =0. If so, then

i-(B)K EG} is a G-biock system, and group G acts transitively on each S

of the blocks of the system. If there are no G-blocks of size at least two,

then G acts primitivey. A G-block system is minimaZ if G acts

primitively on each block.

Sr*

• : .. ; " .'- ..- ,- -.:. 2,?..,2. .2- .-- ' .-..".-" ,-" -.-i -.:'. ".2"-; -.i .-2-,'-".:'. "-. i-.. .-. -i'-? -.. :7 .- -2 . '.. - .. . : . " , -
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COROLLARY 3.2. Fcr (Licis casc) T-crr-ut-,tii r'cs In s al-z'en by randorin

presjntatzor, perrmi.tatior group ri.~e2s4 no'zcion and eq~iality car. a27.

be done in execeted tirme 0(n 3 log n). Furthermore, these bou.nds hold w-.',"

-a. -

p rob ab s*t . 1 - n - Cr 2an-y C.C- '>!: rv ~ ~ 1
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We can easily compute a spanning tree T. and its preorder in sequential

time O(n log n) by depth first search. It is easily to verify that for

each j EV., r. is an element of G. such that r. (i) =j. Hence

R. = {r lJE V is a complete set of coset representatives for G /Gi -
1 j i-l

as required. Furthermore L. = {r- l  (  17TE Li FiI is a list of

(n-i-l)(cL+l)c log n elements of RAND(G_). Thus P "".,Rn are a Sim's

Table with probability >1i-n -

The most costly step of each iteration is [10], which takes time
23

C(n log n). Since there are n iterations, the total time is O(n 3 log n).O

3.4 Solution of Permutation Group Problems Utilizing the Sim's Table

The three lerT=as below follow immediately from the discussion in

Section 2. j.

LEMMA 3.2. G>jG :: X s'~~ 'a~t:~ ~ Cc S , zo: a2n
- n

z>t xE s , S":'s cKr: r tCS- : x E G? t~z-ces 2~
n

LEMMA 3.3. Gi;'cn Germz tawn a:. G1 <g ... gk> anc tke

a"-Ze -;'or . zrm io ro:ir G2 Where G1, G C S , t;eO thz -rc- .r

inclusion test: G1 C G 2? takes seq:4entiaZ tirme O(nk1 ).

Proof. It suffices to test g, E G2  for i = 1,. k

Lemma 3.4. Given permutation groups GI = <gl .. gkl> -n:

G = <h . ,h > in S and their Sim's Tables, t;en we can test grO:ir
2 1 k 2  n

eq-a7ity: G1 = G2 ? in sequential time O(n(kl+k2)).

As an immediate consequence of the above Lemmas 3.2-3.4, Theorem 2.1,

and Corollary 3.1, we have:

-.. o _- . - _. _ . ,r, _ , m ; . --". a_ *_ , , . . . • • . . , . _ " . " . - . . .
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begin

Let L. be a list of m' random elements independently drawn from FAX: (G)

for i= 1,...,n do

beqin

[1] Let Fi_ 1 be the set consisting of the first (a+l)c log n

elements of L

12] Compute the connected components of the graph

i-1

[3] Let V. be the connected component containing i.1

[4] Comp ute a spanning tree T. of component V. r-oted at i.

[5] Label each edge eE T with a permutation k(e) = where E F.

and such that eE E.

[6] Let r. ,i be the identity permutation

[7) In a preorder traversal of tree T., compute for each jE V. - {i

the permutation r. = r. • k(i',j) where j' is the
I'D 1,]3

parent of j.

[6 R j {r.. JV. }.1 1,] 1

[9] Li  0.

110) for each 7TELi - Fi_, do

-l
add r "1 to L..7, (i)

end

return the Sim's Tablc R1 .... Rn

For proof of this algorithm, let us assume inductively for some i > 1

that L is a list of (n-i) (a+l)c log n elements of RAND(Gi_). By
i-i .t

Theorem 3.1, V. is the G.-orbit containing i, with probability /> 1-n
1 1

-: ;i. < .< - -- ''" . ' -"" - / - --. -. . ..- .-.- . . .- . - -. " " - . .. .
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Let G* = (---(G I) 2...)I T(G*) is just the number of connected

components of graph ({i,...,n), ETr 1 ... u E )} which are propernl ac log n

subsets of orbits of G.

Lemma 3.1 implies for any sufficiently large constant ct above c,

1
that Prob(T(G*) = 0) >) 1 - , which proves our Theorem 3.1. 0

n

3.3 Constructing a Sim's Table in O(n3 log n) Expected Sequential Time

Fix a permutation group G c S over points {1,...,n}. For i= 1,...,n,- n

let G be the subgroup of G fixing points 1,... i. The resulting tower1

G = G 0 GI ... Gn = I has height h = n and is called the point stabiizinc

:c.'cr of G. A strong sequence of generators R 1 ....R for this point1 n

stabilizing tower is called a Sim's TbZe.

Unfortunately, it is very expensive to construct the Sim's Table by

known techniques. [Furst, Hopcroft and Luks, 80) give the first polynomial

6

time algorithm, running in sequential time O(n6). lJerrurr, 82] improved

this time to the best known worse-case bound of O(n 5).

THEOREM 3.2. Gi'en a random presentation of a given (worse case)

r7 p G C S , we can ccnstrVct a 'im's Table in expected seqztentiai ti.'

O(n log n). F't her, these bo:nds hold witi probability >1 - n , ;or a -

' <~ -ara ...... .>1 w, c c t I >,> . ,,r',c C.:e. -

Proof. We will fix m' = (a+l)cn log n, where c>l is a sufficiently large

constant and ct.)c is an arbitrarily large constant.

. -. .-.
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algorithm of [Hopcroft and Tarjan, 7 3].

COROLLARY 3.1. We can7 coZ~tC the G-crbits 0rc: (l'c; n) e LCC z7, RI L () (G

O(n log n) seqz cnt;a time, with error probability < n for any suffi-

ciently ZLrpC ccns:eat a> 1.

Now we prove Theorem 3.1. Fix a permutation 7i E G. Let B . fl-,...B-lk

be the orbits of the group <71>. For each TE G, let (P_ (7) be the per-

mutation -'ESE such that Vj= 1,... k, '(j) = j' iff 3i s.t. 7 (i)E E
k 7

and iC B . Thus pl (7) is derived from 7 by collapsing each orbit

of 7 to a single point. Let G., = {P7 (7' I.E G'. Let T(G) bc the sizc of

1 '1
t:>-~~~ se 1 ()~ifr s cc- c.

LEMMA 3.1. f 7 ERAND(G), tec prob(T(Gl) -< (G)/2) •

Proof. Suppose not, then

{(7,i): 7EG, 7'(i) # i} < G .T(C)

By the pidgeon hole principle, 3i such that 7o(io) t i0  for some

70 E G but

EG 7(i 0  = io j >

But this implies that the proper subgroup {7E G r (i) = i0 ) of G ihas order

greater than JGJ/2, a contradiction with Lagrange's Theorem.

- . - .,- -.. ,

~~~~~~~~~~......., I......... "...... ".... '.......... "
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3. PROBABILISTIC ALGORITHMS FOR PERMUTATION GROUPS

Our main results concern permutation group problems. Let S denote
n

the group of all permutations over n points.

3.1 Inference of a Permutation Group from Random Examples

Theorem 2.1 implies that for a fixed permutation group G C S ,
2 2

log(n!) +O(log n) 2<n log n-n log e +O(log n) independently chosen

permutations from RAND(G) suffice to generate G with probability at

least l-n- for any sufficiently large constant a > 1.

3.2 Computing Orbits in Expected Sequential Time O(n log n)

Let G C Sn be a permutation group over {l,... ,n}. The G-orb't of

iE {l,... n} is {f7(i) E G}. Note that the G-orbits [-artition i..n. Lut

E_ = {(i,j)'r(i) = j or 7(j) =

It is obvious that if G =<gl''gk >  then

PROPOSITION 3.1. T e G-orbits are the connected cor-ponents of

1!({i ..,n "tE ).

We will show:

THEOREM 3.1. For a2[ 1 abote a constant c>0, if d = ac log n .

T1 ,E RAND(G), , 2; .... 1- 1 ., G- -

n
connected corronents of the zraph ({l,... ,n}, ET U ..1.Ei ).

1 d°

We can compute the connected components of a graph of n vertices and

cn log n edges in sequential time O(n log n) using the depth first search

. . . . . . . . .. . . . . . . . ...|
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2.6 Random Element Generation from a Strong Sequence of Generators

Again suppose we have a strong sequence of qonerators R1 ,..,

for group G with respect to its subgroup tower G = G0 Gl7 ... ) Gh = I.

We can compute RAND(G) by a simple algorithm described in [Hoffman, 82]

begin

for i =l,...,h let x. be a random element of P

return x . x

s nd

To justify this alqorithm, observe that Lemma 2.2 implies:

LEMMA 2.5. RAND(G) F RAND(R, 1RAND(R

Remark. It is interesting to observe that a random element of G can be

generated by this method in parallel by a binaiv product tree of depth O(log h).

S. . ....... . ........ .. .... .
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Hence we have total failure probability at most hw(l-1/w) m -h w . If there

is no failure, then each R. is a complete set of coset representatives for1

G i_/G. Hence RI,... ,P are the strong generators for this subgroup

tower.

2.5 Group Membership Inclusion, and Equality from Strong Generators

Let G =G 0  G I ... =)GGh =I be a subgroup tower. Let RI,...,Rh be a

strong sequence of generators of G computed in the previous subsections.

We also assume that for any i and x EGi_ we can effectively find the
i--i

coset representive y ER such that x E. y (ie, so y x EG ).

We now describe Sim's algorithm for membership, in the general context

of finite groups.

Given an input x and such a strong sequence of generators, the Sim's

membership algorithm is:

for i =1 to h do

if 3y ER. s.t. x . y then x -y x

else return ("x is not a member of G")

return ("x is a member of G")

Remark. Sim's membership algorithm seems inherently sequential, since the

parallel time for its execution is at least §1(h), where h is the height

of the subgroup tower.

Also observe that given another finitely presented group G' = <gl ...,gk, >

and a strong generator sequence for G, we can test group inclusion G'C:G by

by simply testing g. EG for i =1,...,k'. Furthermore, given strong generator

sequences for finitely presented groups G = <h,...,h k > and

G''' <g -1 >g we can test G = G' by varifying h. EG' for each
1 a k '.

*i=l,...,k and g.EG for each j =1,...,k'.
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begin

Let L be a list of m elements inde,.cndcnt]'- drawn from RA:D(C.

for i =l,...,h do

begin

1

for each A E G /G do

beg in

Let L be the list of elements of L in A* ~i , Ai-

if L. is not empty than
- iA

begin

choose and delete a random element rA fr- Li.

add rA to R1

for each rcmainina elemeit xt L. do

-i
add r x to L.

t i

end

end

end

return strong scuenct of generators FI,... ,h

end

THEOREM 2.2. 11 m n>hw + (log t)/log (hw(l - i/w) ) t;:c ; tkc a 7o:'tto': Cht[

' ,-r" .. . o';d;crztorc Of G .w-. tl crrOr t E.

Proof. We inductively assume that on the i-th iteration, we have had no

failure and Li_ 1 is a set of at least m- (i -l)w elements independently

chosen from RAND(Gi_). Then Lemma 2.4 implies each element of LI  is

independently distributed as RAND(G.) and clearly ILi IL -1 +w <m -iw.

m-hw
By Lemma 2.3, the probability of failure at stage i is at most w(l-1/w)

0- .? - . i .? .. -'- -i. < -i. < ... . . . : ' '- . . . .' . - ... . . - .. . . . .'.



-8-

2.4 Constructing Strong Generators of a Group from Random Examples

Let G be a finite group with subgroup G'cG. We now wish to discover

a complete set of coset representatives of G/G'. Again let L be a random

list of m= Ll elements chosen from independent draws from RAND(c).

Let E be the event that L contains at least one representative of each

coset in G/G'.

LEMMA 2.3. I.f G/C' ;:s w 2Oots, then Prob(E) > 1 -w(l - 1/w)m

Proof. Consider a given coset, say A, of G/G'. Since a random element

of G has equal likelihood to be any coset of G/G',

Frob (LAA = ") = (1 - i/w) . Hence Prob (not E) < w Prob (LAA ) <w(1 - /w . 0

Let us assume event E. For each coset A EG/G', fix rA to be a random

element of LAA, and let R= {r AE G/G'}. For each xEG, let f R(x) =rA x

where x EA.

LEMMA 2.4. f (RAND(G)) S RAND(G').
R

Proof. Clearly fR(x) E G' for each x EG. By definition, f (RAND(G)) has
-i

a distribution function identical to r (RAND(A)) for randomly chosen
A

A EG/G'. Also since r A A=G' f or each A EG/G' we have

-I(RAND(A)) sRAND(G'). Hence f (RAND(G)) -r-l RAID(A) -RAND(G')A R A

We now assume group G has subgroup tower G = G 0D GI ... D G = I of

height h and width w=max IG Gi/G,. The following procedure constructs a
i

* list of strong generators for G with respect to this subgroup tower.
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The structure forest FG  aids us in designing an efficient parallel

di algorithm for 2-group membership testing.

' '5.2 Root Actions are Linear

We wish to reduce 2-group membership testing to solvin linear ver

GF(2)[x]. We will fix throughout Sections 5.2 and 5.3 the 2-

Let al'...,a be the roots of structure forest FG. Let

on root a. if a is not a leaf and 7 permutates the two children of a-1 1 1

and otherwise 7 stabilzZs a.. For any - ESn, let A() = (A (-),...,Ar(-))T

where A.(7) =1 if r, acts on the root a, and otherwise let A.(-) =0.

D D

It is easy to verify:

PROPOSITION 5.1. V-I72 ES n ' A( 1- 2 ) =A(T2" ).

Proof. A(--7 2 ) =A(7 1) +A(-r) =A(T2 ) +A(7 1) =A( 2.-I).

Thus the permutations act commutitively on the roots of the structure

* forest.

To avoid repeated use of the transpose symbol, we will simply let

x Eio, k; denote a column vector of booleans. Let M be the r , k boolean matrix

such that Vi.l: <i <k, the i--th column of M is A(q,). Let A(G) =A2-. E G

-k
LEMMA 5.2. A(G) is zhk Zinear srace MxIxE 0, 1 o2Jr GF (2) [x.

Proof. Suppose 7 EG. Let I =g ... g. be a factorization of - to a
1 -is

* product of its generators. For i =l,...,k, let x. be the residue mod two
1

of {tlJt =i} (ie, x. =0 if gi occurs an even number of times in this

factorization of 7, and x. =1 otherwise). Then by Proposition 5.1,
AC-) x I  xk  u jt

A(-) =A(g I  .'" gk ) . But the j-th element of A(-) is the mod two

sum Z x. where the sum is taken over just those i such that g. acts

on aj. Hence by definition, Mx =A(,).

:-: ::: :- -- " "" : " "':" : " - :: :- '- -: : :-' , i- - : :: .. :" .. . -: -: .. " • : -. - ,. . . ' . .% . - v - . . - . • .-. - .. ' -.. . -. . -. . . .- .... .
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Let G be the subgroup of G consisting of the permutations that fix

the roots aI ... ,a r, ie, G ={7 EGIA(r) = (O,...,o).

k X Xk-LEMMA 5.3. T EG iff 3x E {0,i} s.t. Mx=A() and (gl ... gk ) E

X Xk 1 G() x1 Xk
Proof. If Mx=A(-) and (gl g k -  EG then since g 1 "' gk EG,

we have z E G. Suppose on the other hand that r E G. By Lemma 5.2,
k x1 xk

BxE1Ol s.t. Mx=Aj and so A(gg ) =A(7), hencexl Xk A l XkA (g 1i)
.. . ...,O so (gI ... gk ) 1EG

5.3 2-Group Membership Testing Given a Block Structure Tower

.Let the -str tocr of G be the sequence of subgroups

(0) (h ) (h) -i)
G=G =G D ... =G =I where G is the subgroup of G containing

only permutations that fix all the nodes of depth < i in the structure

forest FG . Since the depth of FG  is at most Llog nj, this tower has

depth n L log nj .

THEOREM 5.1. Suppose we have generators for tke c17ock oa. t:or :',,

G =G(0) DG ( )  . DG (h) =I of the 2-gro GCS . ,zn :Gc c-i l,-,
-n

* o (1);r G i"n timc O(log n)3 us,*g n processor.

Proof. Suppose we are input some permutation r E S . We first must deternine
n

the existence of a solution x E{0,i'k  of the linear equation Mx =A(-)

defined in Lemma 5.2. If no solution exists, we reject -. Otherwise we use

(1)
this solution x to reduce the problem to membership testing in G . In

Xl1 Xk -1 (1)
particular, by Lemma 5.3, we need only test if (gI ... gk ) EG . This

is done by recursive application of the membership test. Since h < [log n],

at most log n stages suffice. Each stage thus requires solution of a linear

system over GF(2)[x] of size at most nxn, which can be done in time O(log n)

0(1)using n by the parallel algorithm of [Borodin, van zer Gothen, and Hopcrcft,

" --: : :- -:: ' :- -: : ": ' ." .', ': : '- ' -: .' : .-' 7 " , -' : : '" ' .- : - :- : .- : -, -'- ' ': '. .:' ' ': : ,' '. : ': .' .: .- '. : .,' ." . .. ,. -.-.: -.'.: ..' : -. .-*-
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3 O (i)
82]. Thus the total time is O(log n) using n processors. a

2Remark. These time bounds can be decreased to O(log n) if the required

matrix inverses are precomputed, (so that each stage requires only matrix

0(i)
multiplications, which takes only O(log n) time using n processors).

5.4 Polylog Time Construction of the Block-Structure Tower from a Random

Presentation

'Let L =i-V-1. } be a list of m permutations independently chosen

0
from RAND(G). Fix m=m /log n. Let Y be the linear space over GF(2)[x]0

r. ~n
c.enerated by A(-) ,... ,A(m). Since A(G) is a group of size at most 2 '

2
m)

by Theorem 2.1 we have

LEMMA 5.4. Prob(Y=A(G)) 1l-c if m >r- (in(r))log(i1/c), werE

Note that since the total number of nodes of the structure fore

2n, we can bound the probability of error to be at most E using

M =2n+ (ln(2n))log(l/ l) random elements of G. For example, if

n 4, then it suffices to let m = 2n +o(n).

Let ' be the r m boolean matrix whose i-th column is A(-) for1

i=1,...,. Then by construction Y={M'xjx EO,l}m}. Let y(1),...,y)

(i) (i) Ci)
be a basis for Y. For i=i,...,., we find x such that x =Y

x(i) x i)
1 mi c AC) y i)

and define the permutation i 1 . Since A() =Y , we have1m 1

by construction Y=A(<I,... >

Now let M" be the r x×. boolean matrix whose i-th column is

A(-.) for i =,. , . Again by construction, Y ={M"z z E 0,I0 1.

For purposes of membership testing, it suffices to have the list

i. which generate the coset representatives of G/ Cl

LEMMA 5.5. The set R.. C2 Izl,... 9. ZE{O,1} is a complete set

of coset representatives for G/G ( I )

" .. "-.- - ' :,1 ..- -ili L-. l-i~ildll. l *..-...< . *... .. -.--. .......... . .. . . ..
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z I  z

For each r Es n, let f () = (1 ... 0x ) where M"z=A(.).
(1)Clearly, if EG then fR(iEG G . Hence by Lemma 2.1 we have

R

(1)!

LEMMA 5.6. f (RAND (G)) RAND(G ).

Since L= (l ... m ) is a list of independently chosen elements of RAND(G),
0

and we have only utilized the first m elements of L to construct a random

presentation of G ( I , it follows from Lernas 2.2 and 5.6 that

(1). -

LEMMA 5.7. L = (fR(-m)...f.( )) .i 'r: ir:. zJ i
1R M-~l R

0

chosen le.'iz=s of RAND (G ).

The above Lemma implies that we can repeat the above construction, to construct

a random presentation of G (2 )  from the first m elements of L ( ) . A

further log n stages yields generators for the entire block-structure tower

G =G () G(1)D ...D G(h) as required. The linear algebraic computations

(such as computing basis vectors), required in each stage of the above

i) 2 0(I)
construction of , can be done in time 0(log n) using n processors

by the methods of [Borodin, van zur Gothen, and Hopcroft, 82]. Since there are

at most log n stages, we have:

THEOREM 5.2. iven a rarndoi presentati'on of 2-grou- G CS Wc CXZ C '.,"&

cenerators for each subgro r of the bock-struct-_re tower, in

3 . 0(1)
time 0(log n) using n processors.

* By Theorems 5.1 and 5.2, we have:

COROLLARY 5.1. Given a random presentation of (worst case) 2-group G CSn

and some xE S we can test memberchl in G ie,-rtc time 0(log n)

0(1)
uein', n processors.
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COROLLARY 5.2. 7 en ravzdor, prescntations of (worse case) 2-group G 1 ,C2 -Sn

,.,e can test G G in cxrcted tim~e oclog n) 3using nO 0M processors.

1. 2
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